点击右上角微信好友

朋友圈

请使用浏览器分享功能进行分享

正在阅读:彩虹多多-彩虹多多
首页>文化频道>要闻>正文

彩虹多多-彩虹多多

来源:彩虹多多2024-05-09 17:48

  

彩虹多多

两岸夫妻南京开咖啡小馆:“浓浓人情味是本店主打”******

  中新网南京12月16日电 题:两岸夫妻南京开咖啡小馆:“浓浓人情味是本店主打”

  中新网记者 朱晓颖

  天色渐暗,城市里人车汇集,楼宇中灯火点亮。在南京闹市区珠江路商业综合体一角,西安小伙张可和台湾姑娘黄匀柔“高雄Hi~Five亥午”咖啡新店飘出咖啡香。

  “欢迎光临,想喝点什么?有热乎乎的台湾冬瓜拿铁哦……”黄匀柔轻声细语,询问着到店顾客。

  店里,名叫“糖糖”的宠物犬摇尾巴“求撸”,暖色系灯光照射在琳琅满目的蛋糕上。黄匀柔一边制作咖啡,一边熟练地为顾客打包甜品。

  “我们店除了卖咖啡、甜品,‘主打’浓浓的人情味,客人们可以随时来唠嗑、拉家常。”张可向中新网记者介绍。

  这对年轻的两岸夫妻,在南京结缘、成家、定居,如今开出的夫妻店已是第二个店面。

咖啡店里的微型手办。 朱晓颖 摄咖啡店里的微型手办。 朱晓颖 摄

  黄匀柔是台湾高雄人。过去,她的父母在大陆投资经商。她在南京上完小学、初中后,到台湾读高中、大学。大学英语专业毕业后,她回到南京,曾在一家培训机构做英语老师。

  张可是陕西西安人,从南京东南大学生物医学工程系毕业后,留学法国。回到南京后,曾在一家医疗公司短暂做过医疗仪器开发的工作,后在一家外企担任工程师职务。

  两个人的结识是由于黄匀柔母亲的一次偶遇。“小柔的妈妈偶然碰到我,觉得我不错,问我第二天有没有时间和她姑娘见个面、喝咖啡,但我那天和别人约好去踢球,但最后也没去踢球。”张可耿直的言语让人忍俊不禁。

  经过黄匀柔母亲撮合,两人渐渐熟悉起来,互生好感。2017年,两人喜结连理,步入婚姻的殿堂。

  “理工男和文科女的搭配,过日子不累。”对此黄匀柔有切身体会。做英语老师那段时间,教育工作事项繁杂,需要付出耐心和细心,精神压力比较大。对此张可发挥自身优势,条分缕析,给出有效建议。

  甜蜜的小两口在2019年突遇变故,张可身患重病。黄匀柔清晰记得,张可突发疾病的当晚是个周六。她刚刚进入教室准备上课,就接到张可朋友打来的电话,赶到医院得知,爱人突发脑溢血,于是紧急手术。

  那段时间,黄匀柔在医院日夜看护。为更好贴身照顾丈夫,她辞去工作,协助丈夫走上康复之路。“在康复机构的日子确实难捱,但他很坚强,主动配合康复训练,反倒给我们很大的精神动力。”

  在此期间,为给丈夫制作健康饮食,黄匀柔重拾了曾经系统学习的烹饪、烘培技能。

  张可的情况日益好转,黄匀柔的烘焙技能也日益见长,干脆,二人开了咖啡店。“做老师时我的英文昵称叫‘CAKE’(蛋糕),没想到最后真的在做CAKE。”黄匀柔笑着说。

  咖啡店起名“高雄Hi~Five亥午”是张可的主意。“‘亥’‘午’是取我们两个人的生肖,‘Hi~Five’也是合拍之意”。

  户外气温已降至零下。天气寒冷,进店买咖啡、甜品的客人络绎不绝。人们哈着气走进咖啡小馆,端着暖暖的咖啡满意而去。(完)

                                                                                                                                                                                                                                                  诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?******

                                                                                                                                                                                                                                                    相比起今年诺贝尔生理学或医学奖、物理学奖的高冷,今年诺贝尔化学奖其实是相当接地气了。

                                                                                                                                                                                                                                                    你或身边人正在用的某些药物,很有可能就来自他们的贡献。

                                                                                                                                                                                                                                                  诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

                                                                                                                                                                                                                                                    2022 年诺贝尔化学奖因「点击化学和生物正交化学」而共同授予美国化学家卡罗琳·贝尔托西、丹麦化学家莫滕·梅尔达、美国化学家巴里·夏普莱斯(第5位两次获得诺贝尔奖的科学家)。

                                                                                                                                                                                                                                                    一、夏普莱斯:两次获得诺贝尔化学奖

                                                                                                                                                                                                                                                    2001年,巴里·夏普莱斯因为「手性催化氧化反应[1] [2] [3]」获得诺贝尔化学奖,对药物合成(以及香料等领域)做出了巨大贡献。

                                                                                                                                                                                                                                                    今年,他第二次获奖的「点击化学」,同样与药物合成有关。

                                                                                                                                                                                                                                                    1998年,已经是手性催化领军人物的夏普莱斯,发现了传统生物药物合成的一个弊端。

                                                                                                                                                                                                                                                  诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

                                                                                                                                                                                                                                                    过去200年,人们主要在自然界植物、动物,以及微生物中能寻找能发挥药物作用的成分,然后尽可能地人工构建相同分子,以用作药物。

                                                                                                                                                                                                                                                    虽然相关药物的工业化,让现代医学取得了巨大的成功。然而随着所需分子越来越复杂,人工构建的难度也在指数级地上升。

                                                                                                                                                                                                                                                    虽然有的化学家,的确能够在实验室构造出令人惊叹的分子,但要实现工业化几乎不可能。

                                                                                                                                                                                                                                                    有机催化是一个复杂的过程,涉及到诸多的步骤。

                                                                                                                                                                                                                                                    任何一个步骤都可能产生或多或少的副产品。在实验过程中,必须不断耗费成本去去除这些副产品。

                                                                                                                                                                                                                                                    不仅成本高,这还是一个极其费时的过程,甚至最后可能还得不到理想的产物。

                                                                                                                                                                                                                                                    为了解决这些问题,夏普莱斯凭借过人智慧,提出了「点击化学(Click chemistry)」的概念[4]。

                                                                                                                                                                                                                                                    点击化学的确定也并非一蹴而就的,经过三年的沉淀,到了2001年,获得诺奖的这一年,夏普莱斯团队才完善了「点击化学」。

                                                                                                                                                                                                                                                    点击化学又被称为“链接化学”,实质上是通过链接各种小分子,来合成复杂的大分子。

                                                                                                                                                                                                                                                    夏普莱斯之所以有这样的构想,其实也是来自大自然的启发。

                                                                                                                                                                                                                                                    大自然就像一个有着神奇能力的化学家,它通过少数的单体小构件,合成丰富多样的复杂化合物。

                                                                                                                                                                                                                                                    大自然创造分子的多样性是远远超过人类的,她总是会用一些精巧的催化剂,利用复杂的反应完成合成过程,人类的技术比起来,实在是太粗糙简单了。

                                                                                                                                                                                                                                                    大自然的一些催化过程,人类几乎是不可能完成的。

                                                                                                                                                                                                                                                    一些药物研发,到了最后却破产了,恰恰是卡在了大自然设下的巨大陷阱中。

                                                                                                                                                                                                                                                     夏普莱斯不禁在想,既然大自然创造的难度,人类无法逾越,为什么不还给大自然,我们跳过这个步骤呢?

                                                                                                                                                                                                                                                    大自然有的是不需要从头构建C-C键,以及不需要重组起始材料和中间体。

                                                                                                                                                                                                                                                    在对大型化合物做加法时,这些C-C键的构建可能十分困难。但直接用大自然现有的,找到一个办法把它们拼接起来,同样可以构建复杂的化合物。

                                                                                                                                                                                                                                                    其实这种方法,就像搭积木或搭乐高一样,先组装好固定的模块(甚至点击化学可能不需要自己组装模块,直接用大自然现成的),然后再想一个方法把模块拼接起来。

                                                                                                                                                                                                                                                    诺贝尔平台给三位化学家的配图,可谓是形象生动[5] [6]:

                                                                                                                                                                                                                                                  诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

                                                                                                                                                                                                                                                    夏普莱斯从碳-杂原子键上获得启发,构想出了碳-杂原子键(C-X-C)为基础的合成方法。

                                                                                                                                                                                                                                                    他的最终目标,是开发一套能不断扩展的模块,这些模块具有高选择性,在小型和大型应用中都能稳定可靠地工作。

                                                                                                                                                                                                                                                    「点击化学」的工作,建立在严格的实验标准上:

                                                                                                                                                                                                                                                    反应必须是模块化,应用范围广泛

                                                                                                                                                                                                                                                    具有非常高的产量

                                                                                                                                                                                                                                                    仅生成无害的副产品

                                                                                                                                                                                                                                                    反应有很强的立体选择性

                                                                                                                                                                                                                                                    反应条件简单(理想情况下,应该对氧气和水不敏感)

                                                                                                                                                                                                                                                    原料和试剂易于获得

                                                                                                                                                                                                                                                    不使用溶剂或在良性溶剂中进行(最好是水),且容易移除

                                                                                                                                                                                                                                                    可简单分离,或者使用结晶或蒸馏等非色谱方法,且产物在生理条件下稳定

                                                                                                                                                                                                                                                    反应需高热力学驱动力(>84kJ/mol)

                                                                                                                                                                                                                                                    符合原子经济

                                                                                                                                                                                                                                                    夏尔普莱斯总结归纳了大量碳-杂原子,并在2002年的一篇论文[7]中指出,叠氮化物和炔烃之间的铜催化反应是能在水中进行的可靠反应,化学家可以利用这个反应,轻松地连接不同的分子。

                                                                                                                                                                                                                                                    他认为这个反应的潜力是巨大的,可在医药领域发挥巨大作用。

                                                                                                                                                                                                                                                    二、梅尔达尔:筛选可用药物

                                                                                                                                                                                                                                                    夏尔普莱斯的直觉是多么地敏锐,在他发表这篇论文的这一年,另外一位化学家在这方面有了关键性的发现。

                                                                                                                                                                                                                                                    他就是莫滕·梅尔达尔。

                                                                                                                                                                                                                                                  诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

                                                                                                                                                                                                                                                    梅尔达尔在叠氮化物和炔烃反应的研究发现之前,其实与“点击化学”并没有直接的联系。他反而是一个在“传统”药物研发上,走得很深的一位科学家。

                                                                                                                                                                                                                                                    为了寻找潜在药物及相关方法,他构建了巨大的分子库,囊括了数十万种不同的化合物。

                                                                                                                                                                                                                                                    他日积月累地不断筛选,意图筛选出可用的药物。

                                                                                                                                                                                                                                                    在一次利用铜离子催化炔与酰基卤化物反应时,发生了意外,炔与酰基卤化物分子的错误端(叠氮)发生了反应,成了一个环状结构——三唑。

                                                                                                                                                                                                                                                    三唑是各类药品、染料,以及农业化学品关键成分的化学构件。过去的研发,生产三唑的过程中,总是会产生大量的副产品。而这个意外过程,在铜离子的控制下,竟然没有副产品产生。

                                                                                                                                                                                                                                                    2002年,梅尔达尔发表了相关论文。

                                                                                                                                                                                                                                                    夏尔普莱斯和梅尔达尔也正式在“点击化学”领域交汇,并促使铜催化的叠氮-炔基Husigen环加成反应(Copper-Catalyzed Azide–Alkyne Cycloaddition),成为了医药生物领域应用最为广泛的点击化学反应。

                                                                                                                                                                                                                                                  诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

                                                                                                                                                                                                                                                    三、贝尔托齐西:把点击化学运用在人体内

                                                                                                                                                                                                                                                    不过,把点击化学进一步升华的却是美国科学家——卡罗琳·贝尔托西。

                                                                                                                                                                                                                                                  诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

                                                                                                                                                                                                                                                    虽然诺奖三人平分,但不难发现,卡罗琳·贝尔托西排在首位,在“点击化学”构图中,她也在C位。

                                                                                                                                                                                                                                                    诺贝尔化学奖颁奖时,也提到,她把点击化学带到了一个新的维度。

                                                                                                                                                                                                                                                    她解决了一个十分关键的问题,把“点击化学”运用到人体之内,这个运用也完全超出创始人夏尔普莱斯意料之外的。

                                                                                                                                                                                                                                                    这便是所谓的生物正交反应,即活细胞化学修饰,在生物体内不干扰自身生化反应而进行的化学反应。

                                                                                                                                                                                                                                                    卡罗琳·贝尔托西打开生物正交反应这扇大门,其实最开始也和“点击化学”无关。

                                                                                                                                                                                                                                                    20世纪90年代,随着分子生物学的爆发式发展,基因和蛋白质地图的绘制正在全球范围内如火如荼地进行。

                                                                                                                                                                                                                                                    然而位于蛋白质和细胞表面,发挥着重要作用的聚糖,在当时却没有工具用来分析。

                                                                                                                                                                                                                                                    当时,卡罗琳·贝尔托西意图绘制一种能将免疫细胞吸引到淋巴结的聚糖图谱,但仅仅为了掌握多聚糖的功能就用了整整四年的时间。

                                                                                                                                                                                                                                                    后来,受到一位德国科学家的启发,她打算在聚糖上面添加可识别的化学手柄来识别它们的结构。

                                                                                                                                                                                                                                                    由于要在人体中反应且不影响人体,所以这种手柄必须对所有的东西都不敏感,不与细胞内的任何其他物质发生反应。

                                                                                                                                                                                                                                                    经过翻阅大量文献,卡罗琳·贝尔托西最终找到了最佳的化学手柄。

                                                                                                                                                                                                                                                    巧合是,这个最佳化学手柄,正是一种叠氮化物,点击化学的灵魂。通过叠氮化物把荧光物质与细胞聚糖结合起来,便可以很好地分析聚糖的结构。

                                                                                                                                                                                                                                                    虽然贝尔托西的研究成果已经是划时代的,但她依旧不满意,因为叠氮化物的反应速度很不够理想。

                                                                                                                                                                                                                                                    就在这时,她注意到了巴里·夏普莱斯和莫滕·梅尔达尔的点击化学反应。

                                                                                                                                                                                                                                                    她发现铜离子可以加快荧光物质的结合速度,但铜离子对生物体却有很大毒性,她必须想到一个没有铜离子参与,还能加快反应速度的方式。

                                                                                                                                                                                                                                                    大量翻阅文献后,贝尔托西惊讶地发现,早在1961年,就有研究发现当炔被强迫形成一个环状化学结构后,与叠氮化物便会以爆炸式地进行反应。

                                                                                                                                                                                                                                                  诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

                                                                                                                                                                                                                                                    2004年,她正式确立无铜点击化学反应(又被称为应变促进叠氮-炔化物环加成),由此成为点击化学的重大里程碑事件。

                                                                                                                                                                                                                                                  诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

                                                                                                                                                                                                                                                    贝尔托西不仅绘制了相应的细胞聚糖图谱,更是运用到了肿瘤领域。

                                                                                                                                                                                                                                                    在肿瘤的表面会形成聚糖,从而可以保护肿瘤不受免疫系统的伤害。贝尔托西团队利用生物正交反应,发明了一种专门针对肿瘤聚糖的药物。这种药物进入人体后,会靶向破坏肿瘤聚糖,从而激活人体免疫保护。

                                                                                                                                                                                                                                                    目前该药物正在晚期癌症病人身上进行临床试验。

                                                                                                                                                                                                                                                    不难发现,虽然「点击化学」和「生物正交化学」的翻译,看起来很晦涩难懂,但其实背后是很朴素的原理。一个是如同卡扣般的拼接,一个是可以直接在人体内的运用。

                                                                                                                                                                                                                                                  「  点击化学」和「生物正交化学」都还是一个很年轻的领域,或许对人类未来还有更加深远的影响。(宋云江)

                                                                                                                                                                                                                                                    参考

                                                                                                                                                                                                                                                    https://www.nobelprize.org/prizes/chemistry/2001/press-release/

                                                                                                                                                                                                                                                    Pfenninger, A. Asymmetric Epoxidation of Allylic Alcohols: The Sharpless Epoxidation[J]. Synthesis, 1986, 1986(02):89-116.

                                                                                                                                                                                                                                                    Rao A S . Addition Reactions with Formation of Carbon–Oxygen Bonds: (i) General Methods of Epoxidation - ScienceDirect[J]. Comprehensive Organic Synthesis, 1991, 7:357-387.

                                                                                                                                                                                                                                                    Kolb HC, Finn MG, Sharpless KB. Click Chemistry: Diverse Chemical Function from a Few Good Reactions. Angew Chem Int Ed Engl. 2001 Jun 1;40(11):2004-2021.

                                                                                                                                                                                                                                                    https://www.nobelprize.org/uploads/2022/10/popular-chemistryprize2022.pdf

                                                                                                                                                                                                                                                    https://www.nobelprize.org/uploads/2022/10/advanced-chemistryprize2022.pdf

                                                                                                                                                                                                                                                    Demko ZP, Sharpless KB. A click chemistry approach to tetrazoles by Huisgen 1,3-dipolar cycloaddition: synthesis of 5-acyltetrazoles from azides and acyl cyanides. Angew Chem Int Ed Engl. 2002 Jun 17;41(12):2113-6. PMID: 19746613.

                                                                                                                                                                                                                                                    (文图:赵筱尘 巫邓炎)

                                                                                                                                                                                                                                                  [责编:天天中]
                                                                                                                                                                                                                                                  阅读剩余全文(

                                                                                                                                                                                                                                                  相关阅读

                                                                                                                                                                                                                                                  推荐阅读
                                                                                                                                                                                                                                                  彩虹多多美国西雅图起重机意外坠落 华裔女大学生被砸身亡
                                                                                                                                                                                                                                                  2024-07-23
                                                                                                                                                                                                                                                  彩虹多多希腊东南海域发生5.0级地震 震源深度29.4公里
                                                                                                                                                                                                                                                  2024-03-20
                                                                                                                                                                                                                                                  彩虹多多西方领导人未出席影响一带一路论坛举办?外交部回应
                                                                                                                                                                                                                                                  2024-12-19
                                                                                                                                                                                                                                                  彩虹多多十亿遗产:我的人生赢家路
                                                                                                                                                                                                                                                  2024-09-13
                                                                                                                                                                                                                                                  彩虹多多林则徐销烟被撤职后,关天培誓死捍卫国家尊严
                                                                                                                                                                                                                                                  2024-06-02
                                                                                                                                                                                                                                                  彩虹多多对标Apple Arcade?三星申请“PlayGalaxy Link”商标
                                                                                                                                                                                                                                                  2024-03-02
                                                                                                                                                                                                                                                  彩虹多多北京7家医院试点国际医疗 为外籍患者提供服务
                                                                                                                                                                                                                                                  2024-03-04
                                                                                                                                                                                                                                                  彩虹多多库里5犯主场球迷齐骂裁判
                                                                                                                                                                                                                                                  2024-09-03
                                                                                                                                                                                                                                                  彩虹多多“敲门”却说找人或说走错了?可能是小偷在试探
                                                                                                                                                                                                                                                  2024-12-10
                                                                                                                                                                                                                                                  彩虹多多不断深化金融供给侧结构性改革
                                                                                                                                                                                                                                                  2024-10-31
                                                                                                                                                                                                                                                  彩虹多多中国留学生亲历电话诈骗
                                                                                                                                                                                                                                                  2024-04-29
                                                                                                                                                                                                                                                  彩虹多多VIP4.3不怕贼惦记吴刚张馨予大漠夺金矿嘉宾:吴刚 张馨予 应采儿
                                                                                                                                                                                                                                                  2024-05-31
                                                                                                                                                                                                                                                  彩虹多多《真人快打11》高清截图
                                                                                                                                                                                                                                                  2024-11-28
                                                                                                                                                                                                                                                  彩虹多多 韩快递员年收入40万人民币,连韩国人都看呆了
                                                                                                                                                                                                                                                  2024-06-05
                                                                                                                                                                                                                                                  彩虹多多 日本景点拒绝外国游客团引争议 专家呼吁“相互理解”
                                                                                                                                                                                                                                                  2024-12-11
                                                                                                                                                                                                                                                  彩虹多多39亿彩票巨奖得主怒告亲儿-图
                                                                                                                                                                                                                                                  2024-08-25
                                                                                                                                                                                                                                                  彩虹多多 美两艘军舰28日通过台湾海峡?中国外交部回应
                                                                                                                                                                                                                                                  2024-04-27
                                                                                                                                                                                                                                                  彩虹多多对话同一地点3次救轻生者司机
                                                                                                                                                                                                                                                  2024-06-06
                                                                                                                                                                                                                                                  彩虹多多华谊兄弟上市后年度首亏 冯小刚郑恺为对赌买单
                                                                                                                                                                                                                                                  2024-06-05
                                                                                                                                                                                                                                                  彩虹多多 去年全国儿童青少年近视调查:总体近视率53.6%
                                                                                                                                                                                                                                                  2024-11-04
                                                                                                                                                                                                                                                  彩虹多多新浪娱乐对话藤冈靛中文流利惊艳全场
                                                                                                                                                                                                                                                  2024-05-05
                                                                                                                                                                                                                                                  彩虹多多崩溃!浙江女子9000元的宠物鸡 被人偷宰准备下锅
                                                                                                                                                                                                                                                  2024-04-01
                                                                                                                                                                                                                                                  彩虹多多红楼梦为什么独写"薄命司"
                                                                                                                                                                                                                                                  2024-09-01
                                                                                                                                                                                                                                                  彩虹多多海南通报"医院涉售假宫颈癌疫苗":查实后顶格罚款
                                                                                                                                                                                                                                                  2024-08-12
                                                                                                                                                                                                                                                  加载更多
                                                                                                                                                                                                                                                  彩虹多多地图

                                                                                                                                                                                                                                                  给大家盘点一下分享一下科普一下官方推荐官方科普攻略我来科普一下资讯热点科普推荐玩家必看科普